Kuantum komputer masih di dalam peringkat penghasilan dan mempunyai pelbagai variasi. |
Komputer kuantum ialah sejenis peranti pengkomputeran yang menggunakan prinsip mekanik kuantum untuk melaksanakan jenis pengiraan tertentu dengan lebih cekap daripada komputer klasik. Komputer klasik, yang termasuk komputer riba dan desktop yang kita gunakan setiap hari, memproses maklumat menggunakan bit, yang boleh wujud dalam satu daripada dua keadaan: 0 atau 1.
Sebaliknya, komputer kuantum menggunakan bit kuantum, atau qubit. Qubit boleh wujud dalam berbilang keadaan serentak disebabkan oleh sifat kuantum yang dipanggil superposisi. Ini membolehkan komputer kuantum melakukan pengiraan dengan lebih pantas daripada komputer klasik untuk tugasan tertentu. Selain itu, satu lagi sifat kuantum yang dipanggil entanglement membenarkan qubit yang terikat untuk dikaitkan antara satu sama lain, yang boleh meningkatkan lagi keupayaan pengiraan.
Komputer kuantum amat sesuai untuk jenis masalah tertentu, seperti pemfaktoran nombor besar, simulasi sistem kuantum dan mengoptimumkan sistem yang kompleks. Walau bagaimanapun, ia masih di peringkat awal pembangunan, dan menghadapi cabaran seperti mengekalkan koheren (memelihara keadaan kuantum) dan pembetulan ralat.
Beberapa syarikat dan institusi penyelidikan sedang giat berusaha membina komputer kuantum praktikal, dan terdapat penyelidikan berterusan untuk mengatasi batasan semasa dan menjadikan komputer kuantum lebih berskala dan boleh dipercayai.
Prinsip utama pengkomputeran kuantum termasuk:
1. Superposisi: Tidak seperti bit klasik, qubit boleh wujud dalam berbilang keadaan pada masa yang sama. Ini membolehkan komputer kuantum memproses sejumlah besar maklumat secara serentak.
2. Keterikatan (Entanglement): Qubit boleh menjadi terjerat, bermakna keadaan satu qubit berkaitan secara langsung dengan keadaan qubit yang lain, tanpa mengira jarak fizikal antara mereka. Ini membolehkan komputer kuantum melakukan pengiraan tertentu dengan lebih cekap daripada komputer klasik.
3. Gerbang kuantum (Quantum gates): Komputer kuantum menggunakan get kuantum untuk melaksanakan operasi pada qubit, serupa dengan get logik klasik dalam komputer klasik. Walau bagaimanapun, gerbang kuantum mengambil kesempatan daripada superposisi dan entanglement untuk melaksanakan operasi yang lebih kompleks.
4. Keselarian kuantum (Quantum parallelism): Komputer kuantum boleh memproses sejumlah besar kemungkinan secara serentak, menjadikannya berpotensi lebih pantas daripada komputer klasik untuk jenis masalah tertentu.
Komputer kuantum masih dalam peringkat awal pembangunan, dan komputer kuantum praktikal berskala besar yang mampu mengatasi prestasi komputer klasik untuk tugasan tujuan umum masih belum tersedia. Walau bagaimanapun, penyelidik membuat kemajuan yang ketara dalam membina sistem kuantum yang lebih stabil dan berskala. Pengkomputeran kuantum berpotensi untuk merevolusikan bidang seperti kriptografi, pengoptimuman dan simulasi, tetapi terdapat juga cabaran teknikal penting yang perlu diatasi sebelum penggunaan praktikal yang meluas menjadi kenyataan.
Berapakah badan yang terlibat dalam penghasilan kuantum komputer?
Penyelidik di MIT bersama kuantum komputer yang cuba dihasilkan. |
Pembangunan komputer kuantum memerlukan perbelanjaan dan teknologi yang tinggi. Sehubungan itu hanya terdapat beberapa badan yang mampu meneruskan pembangunan teknologi perkomputeran ini. Memandangkan kepentingan teknologi ini untuk teknologi akan datang, ianya tetap diteruskan oleh beberapa badan yang terkenal di dunia. Institusi penyelidikan dan badan kerajaan di seluruh dunia terlibat secara aktif dalam pembangunan komputer kuantum. Pengkomputeran kuantum ialah bidang pelbagai disiplin yang memerlukan kepakaran dalam fizik, sains bahan, sains komputer dan kejuruteraan. Berikut adalah beberapa pemain utama dalam ruang pengkomputeran kuantum:
1. Syarikat Swasta:
- IBM: IBM telah menjadi perintis dalam penyelidikan dan pembangunan pengkomputeran kuantum. Mereka menawarkan akses berasaskan awan (cloud-based) kepada komputer kuantum mereka melalui platform Pengalaman Kuantum IBM.
- Google: Makmal Quantum AI Google telah mencapai kemajuan yang ketara, terutamanya dengan pemproses kuantumnya yang dipanggil Sycamore. Mereka mencapai ketuanan kuantum (quantum supremacy), menunjukkan keupayaan komputer kuantum untuk melaksanakan tugas tertentu lebih cepat daripada superkomputer klasik yang paling maju.
- Microsoft: Microsoft sedang mengusahakan pengkomputeran kuantum sebagai sebahagian daripada Kit Pembangunan Kuantumnya, menyediakan alatan dan sumber untuk penyelidik dan pembangun.
- Pengkomputeran Rigetti: Rigetti ialah syarikat permulaan yang memfokuskan pada membangunkan komputer kuantum dan menawarkan akses awan kepada unit pemprosesan kuantumnya.
- Sistem D-Wave: D-Wave terkenal dengan pendekatan penyepuhlindapan kuantum (quantum annealing) dan telah membangunkan komputer kuantum yang boleh didapati secara komersial.
2. Badan Kerajaan dan Institusi Penyelidikan:
- Pentadbiran Aeronautik dan Angkasa Lepas Kebangsaan (NASA): NASA terlibat dalam penyelidikan pengkomputeran kuantum, meneroka aplikasi berpotensi untuk menyelesaikan masalah kompleks dalam penerokaan angkasa lepas dan bidang berkaitan.
- Keutamaan Kuantum Eropah (European Quantum Flagship): Kesatuan Eropah telah melancarkan program Keutamaan Kuantum, satu inisiatif berskala besar untuk memajukan teknologi kuantum, termasuk pengkomputeran kuantum.
- Institut Piawaian dan Teknologi Kebangsaan (NIST): NIST terlibat dalam penyelidikan pengkomputeran kuantum dan sedang berusaha membangunkan piawaian untuk kriptografi tahan kuantum.
- Akademi Sains China (CAS): China telah melabur secara aktif dalam teknologi kuantum, termasuk pengkomputeran kuantum, dengan institusi seperti CAS menerajui usaha penyelidikan.
3. Permulaan (Startups):
- Banyak syarikat permulaan di seluruh dunia memfokuskan pada pelbagai aspek pengkomputeran kuantum, daripada pembangunan perkakasan kepada algoritma kuantum. Contohnya termasuk IonQ, PsiQuantum dan Xanadu Quantum Technologies.
4. Usaha Kolaboratif:
- Banyak kerjasama wujud antara institusi akademik, syarikat dan agensi kerajaan untuk mengumpulkan sumber dan kepakaran. Sebagai contoh, projek Open SuperQ ialah kerjasama antara beberapa institusi penyelidikan Eropah yang berusaha membangunkan pemproses kuantum berskala.
Ini hanyalah beberapa contoh, dan landskap berkembang pesat. Adalah disyorkan untuk menyemak perkembangan dan pengumuman terkini daripada pemain utama dalam bidang pengkomputeran kuantum untuk mendapatkan maklumat terkini.
Model-model reka bentuk kuantum komputer yang sedang dihasilkan.
D-Wave menghasilkan kuantum komputer secara komersial. |
Organisasi dan syarikat yang berbeza sedang meneroka pelbagai pendekatan dan model dalam reka bentuk dan pembangunan komputer kuantum. Dua paradigma utama untuk pengkomputeran kuantum ialah pengkomputeran kuantum berasaskan gerbang (Quantum gates) dan penyepuhlindapan kuantum (quantum annealing). Berikut ialah gambaran ringkas mengenai pendekatan ini:
1. Pengkomputeran Kuantum Berasaskan Gerbang:
- IBM, Google, Microsoft, Rigetti: Syarikat-syarikat ini sedang giat menjalankan pengkomputeran kuantum berasaskan gerbang, yang melibatkan penggunaan bit kuantum (qubit) dan get kuantum untuk melakukan pengiraan. Komputer kuantum berasaskan gerbang menggunakan litar kuantum untuk melaksanakan algoritma kuantum.
- Qubit Superkonduktor: IBM, Google dan Rigetti terutamanya menggunakan qubit superkonduktor, iaitu litar kecil yang diperbuat daripada bahan superkonduktor yang boleh membawa arus elektrik tanpa rintangan apabila disejukkan kepada suhu yang sangat rendah.
- Ion Terperangkap: Sesetengah organisasi, seperti IonQ, menggunakan ion terperangkap sebagai qubit. Qubit diwakili oleh ion individu yang dimanipulasi menggunakan pancaran laser.
2. Penyepuhlindapan Kuantum:
- Sistem D-Wave: D-Wave menggunakan pendekatan berbeza yang dikenali sebagai penyepuhlindapan kuantum (quantum annealing). Penyepuh kuantum direka bentuk untuk mencari keadaan tenaga minimum sistem, menjadikannya sesuai untuk masalah pengoptimuman.
- Qubit Fluks Superkonduktor: D-Wave menggunakan qubit fluks superkonduktor dalam pemproses penyepuhlindapan kuantumnya.
Kuantum Komputer yang dihasilkan oleh Google. |
3. Pengkomputeran Kuantum Topologi:
- Microsoft: Microsoft sedang meneroka pendekatan berbeza yang dikenali sebagai pengkomputeran kuantum topologi. Mereka bertujuan untuk mencipta qubit menggunakan anyon, iaitu zarah eksotik yang wujud dalam jenis bahan tertentu.
4. Pengkomputeran Kuantum Fotonik:
- Teknologi Kuantum Xanadu: Xanadu sedang meneroka pengkomputeran kuantum fotonik, yang menggunakan zarah cahaya (foton) sebagai qubit. Pendekatan ini adalah berdasarkan pengkomputeran kuantum pembolehubah berterusan.
5. Pengkomputeran Titik Kuantum:
- Pelbagai Institusi Penyelidikan: Titik kuantum, atom buatan berasaskan semikonduktor, juga sedang diterokai sebagai qubit yang berpotensi. Penyelidikan sedang dijalankan dalam tetapan akademik dan industri.
6. Pendekatan Hibrid:
- IonQ: IonQ, sebagai contoh, menggunakan pendekatan hibrid, menggabungkan ion terperangkap dengan teknik pengkomputeran kuantum berasaskan gerbang.
Itu hanyalah beberapa pendekatan dalam teknik penghasilan kuantum komputer yang digunakan oleh beberapa badan yang cuba menghasilkan kuantum komputer memandangkan bidang ini sangat dinamik. Penyelidik dan syarikat terus meneroka idea dan teknologi baharu untuk menangani cabaran yang berkaitan dengan membina komputer kuantum berskala dan toleransi terhadap kesalahan. Pilihan pendekatan selalunya bergantung pada faktor seperti sifat fizikal qubit, kadar ralat, dan potensi untuk berskala.
Bilakah komputer kuantum yang berfungsi sepenuhnya dapat dihasilkan?
Kuantum Komputer oleh IBM yang dikenali sebagai Osprey. |
Sehingga ke hari ini meramalkan jangka masa yang tepat apabila kita akan mempunyai komputer kuantum berskala besar yang berfungsi sepenuhnya adalah mencabar. Pengkomputeran kuantum ialah bidang penyelidikan yang aktif, dan kemajuan sedang cuba dihasilkan, tetapi sukar untuk menentukan garis masa tertentu disebabkan oleh cabaran dan ketidakpastian yang wujud.
Beberapa faktor menyumbang kepada ketidakpastian, termasuk kesukaran teknikal yang berkaitan dengan membina dan mengekalkan qubit yang stabil, membangunkan kaedah pembetulan ralat dan menangani isu kebolehskalaan. Komputer kuantum kini berada di peringkat awal pembangunan, dan para penyelidik membuat kemajuan secara berperingkat.
Anggaran untuk pembangunan komputer kuantum yang praktikal dan boleh skala telah berbeza-beza secara meluas. Sesetengah pakar mencadangkan ia mungkin mengambil masa sedekad atau lebih, manakala yang lain percaya bahawa penemuan penting boleh berlaku lebih awal. Garis masa juga boleh dipengaruhi oleh cabaran atau kejayaan yang tidak dijangka dalam bidang tersebut.
Adalah penting untuk sentiasa dikemas kini dengan perkembangan terkini dalam pengkomputeran kuantum semasa penyelidikan berjalan, dan garis masa mungkin menjadi lebih jelas sejak kemas kini terakhir yang dilakukan. Sentiasa merujuk kepada sumber terkini untuk mendapatkan maklumat terkini tentang perkembangan teknologi pengkomputeran kuantum.